Interpolation of shared π-bonds in cyclofusene

Sasan Karimi*
Chemistry Department, Queensborough Community College, Bayside, NY 11364, USA
E-mail: skarimi@qcc.cuny.edu
Marty Lewinter
Mathematics Department, Purchase College, Purchase, NY 10577, USA

Received 3 February 2005; revised 11 February 2005

Abstract

Cyclofusene is a corona-condensed benzenoid whose graph-theoretic representation consists of hexacycles with exactly two non-adjacent shared II-bonds. We showed that the number of linear chains, k, is an upper bound for m, the number of shared II-bonds. Furthermore, this upper bound is achievable. In this paper, we show that given a positive even integer $m<k$, there exists m shared II-bonds. In other words, the number of shared II-bonds in cyclofusene has the even interpolation property.

KEY WORDS: cyclofusene, graph-theoretic, hexacycles, corona-condensed benzenoid, interpolation

The resonance structure counts [1,2] in primitive coronoid hydrocarbons, termed "Cyclofusene" [3], has been extensively studied [4-6]. We have previously shown [3] that given a mixed configuration of cyclofusene with k linear chains containing m shared II-bonds, m is even and $m \leqslant k$. Furthermore, the case $m=k$ is achievable. We conjectured [3] that the number of shared II-bonds in a given cyclofusene, has the even interpolation property [7] on the set of configurations of that cyclofusene. In this paper, we verify this conjecture by defining the following operation:

Let f be an integer-valued function with domain $\left\{n_{1}, n_{2}, \ldots, n_{r}\right\}$. f interpolates if whenever a given integer h satisfies the inequality $f\left(n_{i}\right)<h<f\left(n_{k}\right)$, there exists an element n_{j} in the domain such that $f\left(n_{j}\right)=h$. If f is even-valued, we have the even interpolation property upon restricting h to even integers.

Given a cyclofusene, let e be a shared π-bond in a linear chain with end cycles α and β, as in figure 1 . Note that the remaining shared π-bonds in the linear chain are determined by the location of e. We define a "push of the shared π-bond e toward the pivot cycle $\beta "$ as the sequence depicted by figures $1-3$.

[^0]

Figure 1. A cyclofusene with a shared π-bond in a linear chain.

Figure 2. The first push of the shared π-bond toward the pivot cycle β.

Let G be the graph-theoretic representation of a cyclofusene with k linear chains and k shared π-bonds. Using two "pushes" of the shared π-bonds of two consecutive linear chains, we can move both shared π-bonds to the pivot cycle A of the two linear chains as in figure 4. Upon delocalizing the π-bonds of pivot cycle A, we obtain a pivot cycle with no shared π-bonds. That is, the two "pushed" π-bonds have been eliminated, thereby lowering the number of shared

Figure 3. The second push of the shared π-bond toward the pivot cycle β.

Figure 4. Both shared π-bonds are pushed to the pivot cycle A.
π-bonds in G from k to $k-2$. Upon repetition of this procedure as often as required, we obtain the following theorem:

Theorem. Given a cyclofusene G with k linear chains, the number of possible shared π-bonds has the even interpolation property between 0 and k.

References

[1] S.J. Cyvin and I. Gutman, Kekule Structures in Benzenoid Hydrocarbons (Springer, Berlin, Heidelberg, New York, 1988).
[2] S. Karimi, M. Lewinter and J. Stauffer, J. Math. Chem. 34 (2003) 297-301.
[3] T. Bocchi, S. Karimi and M. Lewinter, J. Math. Chem. 35 (2004) 339-344.
[4] S.J. Cyvin, B.N. Cyvin, J. Brunvoll, H. Hosoya, F. Zhang, D.J. Klein, R. Chen and O.E. Polansky, Monatsh. Chem. 122 (1991) 435-444.
[5] J. Brunvoll, B.N. Cyvin and S.J. Cyvin, J. Chem. Inf. Comp. Sci. 27 (1987) 14-21.
[6] J. Brunvoll, B.N. Cyvin, S.J. Cyvin, I. Gutman, R. Tosic and M. Kovacevic, J. Mol. Struct. (Theochem.) 184 (1989) 165-177.
[7] M. Lewinter, IEEE Trans. Circ. Sys. CAS-34 (1987) 205.

[^0]: * Corresponing author.

